Shock-compressed MgSiO$_3$ glass, enstatite, olivine, and quartz: Optical emission, temperatures, and melting

Sheng-Nian Luo
Plasma Physics (P-24) and Earth and Environmental Sciences (EES-11), Los Alamos National Laboratory, Los Alamos, New Mexico, USA
Lindhurst Laboratory of Experimental Geophysics, Seismological Laboratory, California Institute of Technology, Pasadena, California, USA
Joseph A. Akins and Thomas J. Ahrens
Lindhurst Laboratory of Experimental Geophysics, Seismological Laboratory, California Institute of Technology, Pasadena, California, USA
Paul D. Asimow
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA

Received 20 October 2003; revised 3 March 2004; accepted 10 March 2004; published 11 May 2004.

[1] Optical emission of MgSiO$_3$ glass, enstatite, olivine, and quartz under shock wave compression was investigated with optical pyrometry at discrete wavelengths ranging from visible to near infrared. We develop a new analysis of optical emission that does not require a gray body assumption. Instead, at each wavelength, the optical linear absorption coefficients (a) and blackbody spectral radiances (L_{bb}) of shocked and unshocked materials were obtained by nonlinear fitting to the time-resolved radiance from the target assembly. The absorption spectra of unshocked samples corresponding to the measured values of a reproduce those from independent static optical spectroscopic measurements. The measured values of a (ranging from 7 to 56 mm2/C01) for shocked samples indicate that shock-induced high-pressure phases (including melt) can be regarded essentially as black bodies in the optical range investigated, although starting phases such as enstatite and olivine have band-like spectra at ambient conditions. The effect of emission from the air gap at the driver sample interface on the recorded radiance can be resolved, but a and L_{bb} cannot be separated for this component of the signal. The shock velocity-particle velocity relationships of these silicates derived from radiance history are in accord with previous investigations using independent techniques. Given the limited amount of shock wave data, possible high-pressure melting curves of Mg-perovskite and its assemblage with periclase are deduced; their melting temperatures near the core-mantle boundary (CMB) being 6000 ± 500 K and 4000 ± 300 K, respectively. It is proposed that Mg-perovskite melts with density increase at the CMB pressure. INDEX TERMS: 3924 Mineral Physics: High-pressure behavior; 3939 Mineral Physics: Physical thermodynamics; 3944 Mineral Physics: Shock wave experiments; KEYWORDS: shock temperature, melting, equation of state, pyrometry, silicates, perovskite

1. Introduction

[2] Progress in the application of modern seismic techniques ranging from travel time tomography to waveform modeling continues to yield improved knowledge of the three-dimensional structure of longitudinal and shear wave velocities and density of the Earth’s deep interior [Grand et al., 1997; Ni et al., 2002]. Converting such observations into constraints on the chemical, mineralogical, and thermal state of the mantle requires detailed understanding of the equations of state (EOS) and phase transitions (both solid-solid and melting) of candidate minerals. Of particular interest are the low- and ultra-low velocity zones (ULVZ) found in the lowermost mantle near the core-mantle boundary (CMB) [Garnero and Helmberger, 1995]. The velocity reductions associated with these anomalies are so extreme that partial melting appears to be the only interpretation allowed by mineral physics. Understanding the consequences of such melting demands detailed knowledge of phase relations and physical properties for the major (and, eventually, minor components) of the lower mantle, presumably silicates and oxides such as (Mg,Fe)$_2$SiO$_4$, (Mg,Fe)SiO$_3$, (Mg,Fe)Si$_2$O$_6$, and MgSiO$_3$.
(Mg,Fe)O and perhaps SiO₂. Static high-pressure experiments in the multianvil apparatus and diamond-anvil cell (DAC) have provided some constraints on the melting behavior of such minerals [Zerr and Boehler, 1993; Shen and Lazor, 1995; Heinz and Jeanloz, 1987; Kato and Kumazawa, 1985]. Limitations on the pressure and temperature capability of these systems, however, mean that melting of some of these components has not been characterized above 100 GPa; there are also major discrepancies among the measured or extrapolated melting curves derived from DAC observations for some components. First-principles and molecular dynamics simulations of such complicated silicate systems remain challenging, and at present must still be validated against accurate experimental results. In dynamic techniques such as planar shock wave loading, samples are compressed and heated simultaneously, thus melting points above 100 GPa can in principle be measured, although studies with such techniques suffer from scanty data and possible kinetic behavior such as superheating [Bones and Brown, 1993; Luo and Ahrens, 2003; Luo et al., 2003a; Luo and Ahrens, 2004]. Currently, shock wave loading serves as a major practical approach to resolving melting at pressures directly relevant to the lowermost mantle. In this work, we intend to probe the melting behavior of MgSiO₃ perovskite (hereafter, Pv) and the analogue lower mantle assemblage Pv plus periclase.

[5] No shock temperature data are available for Pv. Although we have not used Pv as an ambient pressure starting material in this study, we expect that Pv forms upon shock wave loading of MgSiO₃ glass or of crystalline enstatite for shock pressure greater than about 60 GPa [Brown et al., 1987b]. Previously, the long-range order of shocked Si and Ga has been observed [Swift et al., 2001; Luo et al., 2004] with in situ time-resolved X-ray diffraction techniques. We take this as an indication that the crystalline phases may also form during shock wave loading of silicates. As MgSiO₃ glass is less dense than enstatite at ambient conditions, glass starting material shocks to higher temperature states (at a given compressed density) than enstatite, and so shock-synthesized perovskite melts at lower pressure on the principal Hugoniott of glass than on that of enstatite. Both starting materials are investigated in this work in order to obtain constraints on the melting of Pv at different pressures.

[4] The shock wave equations of state [Jackson and Ahrens, 1979; Brown et al., 1987b] and high-pressure sound speed [Brown et al., 1987a] have previously been measured for forsterite and olivine. Shock melting of forsterite and olivine has been investigated using optical pyrometry to infer shock temperatures [Lyzenga and Ahrens, 1980; Holland and Ahrens, 1997]. At similar pressures, the temperatures inferred by Holland and Ahrens [1997] are significantly higher than those by Lyzenga and Ahrens [1980], possibly due to the low emissivity obtained in the former study, which also found unexplained dramatic differences in emissivities at slightly different pressures for the same phases (e.g., c₁ ≈ 0.03 and 0.3 at 184 and 192 GPa, respectively). We have reanalyzed the olivine data of these authors accounting, for the first time, for optical linear absorption of the unshocked sample through which the shock front radiation is observed.

[5] Previous studies utilizing optical pyrometry assumed gray body radiation and used whole-spectrum fitting to obtain emissivity and temperature. However, the emissivity (and blackbody spectral radiance) can be determined separately and independently at each individual wavelength from time-resolved radiation recordings [Boslough, 1985]. This approach is less susceptible to scatter of measurements among different wavelengths and is able to deal with non-gray body spectral features. This technique is of particular advantage for unshocked materials with band-like absorption spectra such as Fe-bearing olivine and orthopyroxene that complicate the radiation history of shocked samples. Besides optical properties and temperature, the radiation history contains a recording of shock front velocity and hence can be inverted for equation of state, which is usually measured with different diagnostic technology. As quartz is well-studied with various techniques including shock temperature measurement, it is included in present study as a technical reference. We begin by reviewing the methodology of optical pyrometry followed by experiments and data analysis sections. We end with a discussion of the geophysical implications of these results.

2. Methodology

[6] Optical pyrometry is the use of optical emission measurements to determine the temperature and optical properties of shock-compressed materials [Kormer, 1965; Boslough and Ahrens, 1989]. We review here the justification for application of Planck’s formula, typical experimental designs and methods for data reduction. We assume that the observed optical signal is thermal radiation and that the electron temperature equilibrates to that of the lattice on the timescales of shock wave loading.

[7] Photons are bosons obeying Bose-Einstein statistics (e.g., Fowles [1989]). At equilibrium, the mean occupation number of photons at certain state centered at frequency ν is \(n = \frac{\nu}{e^{\nu/kT} - 1} \) where \(T \) is temperature, \(h \) Planck’s constant and \(k \) the Boltzmann constant. The density of states for a photon at frequency \(\nu \) is \(g_\nu = \frac{8\pi\nu^2}{c^3} \) where \(c \) is the speed of light. Thus the energy density (e) per unit frequency interval is

\[
e(\nu) = \frac{8\pi\nu^2}{c^3} \frac{1}{e^{\nu/kT} - 1}.
\]

i.e., Planck’s formula for blackbody radiation. The energy flux per unit frequency interval is \(J_\nu = c_e n_\nu \), and can be converted to its counterpart in wavelength (\(\lambda \)) with \(\nu = c/\lambda \) and \(d\nu = -c/(\lambda^2)c d\lambda \). The spectral radiance \(L_{\lambda b} = J_\nu/\pi \) for a blackbody

\[
L_{\lambda b} = \frac{c_1}{\lambda^5} \frac{1}{e^{c_2/\lambda T} - 1}
\]

where \(c_1 = 2hc^2 \approx 1.191 \times 10^{-16} \ Wm^2sr^{-1} \), and \(c_2 = hc/k \approx 1.439 \times 10^{-12} \ mK \). \(L_{\lambda b} \) is essentially the energy flux per unit wavelength interval per unit solid angle (\(Wm^{-2}sr^{-1} \)). As a light source is not necessarily a blackbody, the spectral radiance is written in a more general form as \(L_\nu = \epsilon(\lambda, T)L_{\lambda b} \) where \(\epsilon \) is emissivity and assumed to depend on \(\lambda \) and \(T \) only.
To determine the temperature of a radiating sample
upon shock wave compression, we need to know
L_λ and $\epsilon(\lambda, T)$. In practice, a multichannel pyrometer (Figure 1) is
utilized to measure L_λ at discrete wavelengths with narrow-bandpass optical filters (~ 9 nm half-height bandwidth).
Calibration is required to obtain the absolute values of L_λ
with a spectral radiance or irradiance source. The latter
is adopted in this work. A quartz-halogen tungsten-filament
lamp with spectral irradiance I_λ (Figure 2; Note that the unit
is equal to power per unit wavelength per unit solid
gle, i.e., $\epsilon = 1 - e^{-\alpha d}$. Thus the observed spectral radiance
$L_\lambda = L_{\lambda,b,air}(1 - R_1)(1 - R_2)(1 - R_3)\epsilon_{air}e^{-\alpha_{air}d_0}e^{-\alpha_{air}d}$
$+ L_{\lambda,b,s}(1 - R_2)(1 - R_3)\epsilon_{s}e^{-\alpha_{s}d}$
$+ L_{\lambda,b,s}(1 - R_1)(1 - e^{-\alpha_{s}d})$
consists of contributions from the air gap, shocked and
unshocked sample where $L_{\lambda,b,s}$ is the quantity of main

$$V_{\text{lamp}} \propto \int \int \int \lambda \cdot I_\lambda(\lambda, \Omega) H(\lambda) d\lambda d\Omega$$ \hspace{1cm} (3)$$

where Ω is solid angle, and $H(\lambda)$ is the response function of
the optical path including narrow-band filter centered at a
certain wavelength λ_0. Similarly, for shock-loaded sample,

$$V_{\text{sample}} \propto \int \int \int \lambda \cdot I_\lambda(\lambda, \Omega, T) H(\lambda) d\lambda d\Omega dS$$ \hspace{1cm} (4)$$

Figure 1. Schematic diagram of a six-channel optical
pyrometer for shock temperature measurement. Air gap may
be present at driver-sample interface. Light emitted from
behind shock front passes through aperture of mask.
Expendable turning mirror and optics relay light to six
narrow-density filters allow the dynamic
range of the system to be optimized for the expected
system as well as the reflectivity (R) of the interfaces.
Assuming local thermodynamic equilibrium, emissivity (ϵ)
of a non-reflecting layer of thickness d is equal to absorbance,
i.e., $\epsilon = 1 - e^{-\alpha d}$. Thus the observed spectral radiance
L_λ is defined as the power per unit wavelength intercepted by a
1 cm^2 detector, 50 cm from center of filament. Note that to
apply values of I_λ in equations (4) and (5), one needs to
convert units to power per unit wavelength per unit solid
gle. Vertical dotted lines denote the wavelengths of
narrow-band filters adopted in the current pyrometer. The
insert shows a typical calibration record (voltage versus
time) at $\lambda = 551.0 \text{ nm}$ for S-1045.
If experiments are conducted without significant sample preheating, the 3rd term on the right-hand side of equation (6) can be neglected. Interface reflectivity \(R_i = \left(\frac{n_i - 1}{n_i + 1} \right)^2 \) where \(n_i \) (i = 1, 2 and 3, denoting air – sample, shocked – unshocked sample and sample – free surface interfaces respectively) is the relative index of refraction across the interface. As \(n_i \) is wavelength-dependent and its values are not available (at high pressures), we assume \(R_i \approx 0 \) as in previous studies [Lyzenga et al., 1983]. For a shock state with shock velocity \(U_s \) and particle velocity \(u_p \), \(d_i = (U_s - u_p)t \) and \(d_i = d_0 - U_s t \) where \(d_0 \) is the initial sample thickness and \(t \) the time after the shock front enters the sample.

Previous studies mostly assumed gray (or black) body radiation, such that at each wavelength during the experiment single values of emissivity and temperature are obtained simultaneously from fitting to \(L_{s, b} = \epsilon(T)L_{s, b} \). The gray body assumption is difficult to justify a priori. Instead we show in this paper that the time-evolution of the recorded radiation over the course of the shock transit through the experiment in fact contains information on temperature and emissivity. This allows \(a \) (and hence \(\epsilon \)) and \(L_{s, b} \) to be obtained from non-linear fitting to equation (6). The values of \(L_{s, b} \) at different wavelengths then allow temperature to be determined by fitting \(L_{s, b}(\lambda) \) to equation (2). This results in independent values of \(\epsilon \) at each wavelength, independent of calibration and requiring no gray body assumption. Although the principle has been described before [Boslough, 1985], this method has not previously been applied rigorously to real data.

3. Experiments

We carried out shock temperature measurements on synthetic x-cut single-crystal \(\alpha \)-quartz (Adolf Meller Co.), synthetic MgSiO3 glass and natural enstatite (Table 1 and 2). Our primary interest here is in the MgSiO3 system, but given the significant amount of shock wave data available for quartz [Lyzenga et al., 1983], we conducted a diagnostic quartz shot to test the pyrometer and the new data reduction technique and to provide a reference for data analysis in unknown experiments. MgSiO3 glass is synthesized by melting an equimolar mixture of Johnson-Matthey high-purity MgO and SiO2 powders at 1650°C and carefully regulating the water-quench procedure to suppress both cracking and forsterite crystallization. The natural enstatite samples are cut from gem quality single crystals from Sri Lanka. Electron microprobe analysis on both glass and enstatite revealed chemical compositions of essentially MgSiO3 (Table 1). Both MgSiO3 glass and enstatite are colorless and nearly transparent to visible light. We measured their absorption spectra in the range of 300 – 1100 nm (Figure 3). The absorbance of MgSiO3 glass decreases with \(\lambda \) but cannot be described by \(\lambda^{-3} \) as in Rayleigh scattering [Jackson, 1975]. Enstatite demonstrates three absorption peaks with a pronounced one near 900 nm as expected [Burns, 1993]. Note that the values for absorbance vary with optical setup and sample thickness, and are meaningful only in a relative sense.

Samples are sectioned into disks and polished to appropriate thickness to minimize edge effects. Both sides are of submicron-micron smoothness, and one side is coated with a thin Al layer by evaporation. The coated side of the sample is then glued in tight contact with a finely polished metal driver plate. An air gap of varying thickness forms at the driver-sample interface. The Al coating is intended to block radiation from the shocked air gap into the sample, but its effectiveness strongly depends on the strength of coating. The air gap can be minimized by improving further the polish on the contacting surfaces of sample and driver plate. (As shown later, the effect of the air gap can be resolved in our experiments, possibly yielding extra information on the shock behavior of air.)

The calibration lamp (S-1045 for quartz, MgSiO3 glass and enstatite shots) is placed at the sample position prior to installing target. A typical calibration voltage trace is shown in Figure 2 (insert) from which \(V_{\text{lamp}} \) is determined as offset of the plateau from the baseline. Then the target assembly is installed without altering the optical path and the chamber is closed and evacuated for shooting on the two-stage light-gas gun at Caltech. Each pyrometer channel output is recorded by 2–4 oscilloscope channels. The voltage signal \(V_{\text{sample}} \) is then converted to apparent spectral radiance \(L_{\lambda} \) using the calibration voltage \(V_{\text{lamp}} \), the lamp spectral irradiance (\(I_{\lambda} \), Figure 2), the mask area and equation (5). Figure 4 displays representative time-resolved spectral radiances of shocked MgSiO3 glass (shot 335) recorded by the six-channel pyrometer.

As we will reanalyze the previous data on olivine [Holland and Ahrens, 1997], we briefly discuss the exper-

![Figure 3. Representative optical absorption spectra of synthetic MgSiO3 glass and natural enstatite crystal. Arrows indicate absorption peaks of enstatite as by Burns [1993].](image-url)
iment. Samples were San Carlos and Burma peridot with compositions close to (Mg0.9Fe0.1)2SiO4. Optical spectroscopy of starting materials revealed a slight decrease of absorbance with wavelength in the 450–560 nm range, a shallow increase at 560–700 nm and a significant increase beyond 700 nm [Holland, 1997]. The experiment was similar to those for quartz, MgSiO3 glass and enstatite except that the calibration lamp was M-416 (Figure 2). Previous experiments on forsterite [Lyzenga and Ahrens, 1980] adopted similar technique.

4. Data Analysis

Typical spectral radiance histories of quartz, olivine, MgSiO3 glass and enstatite are shown in Figures 4 and 5. As we will see, some of the distinctive appearances of these spectra result from the differing absorbance properties of the unshocked sample materials; some features result from imperfect emission by the shocked sample early in the experiment when the shocked layer is very thin; other features result from differences in the intensity of the air

Figure 4. Representative time-resolved radiance profiles recorded by the six-channel pyrometer (MgSiO3 glass, shot 335). Times marked a – e correspond to key events discussed in text upon loading and unloading.

Figure 5. Time-resolved spectral radiance from (a) shocked quartz (shot 334), (b) olivine (245) and (c) enstatite (342). Dotted curves denote shock recordings, and solid curves are models fits using equation (6). The fitted parameters shown on each panel. Lλ,b is given in units of 10^13 Wm^{-3}sr^{-1}; a_s and a_u are in mm^{-1}. Values in parentheses indicate uncertainties in the fitting. In (c), points a – f denote significant events in loading and unloading history (see text) and L_{λ,air} = \epsilon_{air}L_{λ,b,air}.
Table 2. Shock Wave Experiments Parameters*

<table>
<thead>
<tr>
<th>Shot #</th>
<th>Starting Material</th>
<th>d (mm)</th>
<th>w (mm)</th>
<th>p0 (g/cm³)</th>
<th>u0 (km/s)</th>
<th>PH (GPa)</th>
<th>Us (km/s)</th>
<th>up (km/s)</th>
<th>p (g/cm³)</th>
<th>TH (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>245</td>
<td>Olivine</td>
<td>3.38</td>
<td>6.35</td>
<td>3.36</td>
<td>6.82</td>
<td>188(6)</td>
<td>11.46(16)</td>
<td>4.89(15)</td>
<td>5.86(15)</td>
<td>4810(70)</td>
</tr>
<tr>
<td>334</td>
<td>Quartz</td>
<td>4.78</td>
<td>2.11</td>
<td>2.65</td>
<td>5.64</td>
<td>106(1)</td>
<td>9.23(7)</td>
<td>4.36(4)</td>
<td>5.02(5)</td>
<td>6680(420)</td>
</tr>
<tr>
<td>335</td>
<td>En. Glass</td>
<td>3.85</td>
<td>2.02</td>
<td>2.75</td>
<td>5.67</td>
<td>117(3)</td>
<td>9.85(10)</td>
<td>4.30(8)</td>
<td>4.88(8)</td>
<td>5580(130)</td>
</tr>
<tr>
<td>336</td>
<td>En. Glass</td>
<td>2.54</td>
<td>2.10</td>
<td>2.73</td>
<td>5.88</td>
<td>121(4)</td>
<td>9.92(16)</td>
<td>4.47(13)</td>
<td>4.96(13)</td>
<td>5940(560)</td>
</tr>
<tr>
<td>340</td>
<td>En. Crystal</td>
<td>1.86</td>
<td>2.02</td>
<td>3.19</td>
<td>5.85</td>
<td>142(7)</td>
<td>10.47(24)</td>
<td>4.26(18)</td>
<td>5.38(17)</td>
<td>4130(50)</td>
</tr>
<tr>
<td>341</td>
<td>En. Crystal</td>
<td>1.88</td>
<td>1.98</td>
<td>3.19</td>
<td>6.38</td>
<td>165(8)</td>
<td>11.17(27)</td>
<td>4.62(20)</td>
<td>5.44(19)</td>
<td>4900(140)</td>
</tr>
<tr>
<td>342</td>
<td>En. Crystal</td>
<td>1.95</td>
<td>1.98</td>
<td>3.23</td>
<td>6.79</td>
<td>183(9)</td>
<td>11.59(28)</td>
<td>4.89(21)</td>
<td>5.59(20)</td>
<td>5450(100)</td>
</tr>
</tbody>
</table>

*Flyer and driver are Ta plates. Values in parentheses denote uncertainties. Errors in d, p0, and u0 are negligible. w is the diameter of the aperture in the mask.

gap flash due to variations in driver and sample polishing and Al coating. To illustrate the general physical process, the interpretation of the various parts of these records is shown using lettered time markers as in Figures 4 and 5c. First, the shock reaches the rear surface of the opaque driver at point a. Some records show a sharp rise in intensity ab as the shock reverberates in the air gap at the driver-sample interface. The air is compressed to peak pressure and its temperature rises in less than 10 ns to a level significantly higher than the sample. Once the shock enters the sample, the transmission of the air radiance decreases rapidly (bc segment, Figures 4 and 5c) mostly due to the screening effect of an increasing thickness of shocked sample. On the other hand, particularly in cases where the unshocked material is significantly absorbing, radiance turns around and increases again during cd. As the shock propagates through the sample, this interval reflects the increasing thickness (and thus emissivity) of the shocked sample and the decreasing thickness and hence absorption of the unshocked sample. The shock reaches the rear surface of the sample at time d; segment de shows the temperature and radiance decrease upon release. The reason for the later rise of radiance (ef) is not clear; possibly this is due to reshock on the metal mask. The exact shape certainly depends on the optical properties at shocked, unshocked and release states. The air gap is absent in quartz and olivine shots, thus the recordings are simpler. More quantitative analysis can be obtained from equation (6) using the following procedure.

[16] Fitting the observed spectral radiance to equation (6) yields Lb, a, and q (and possibly the product eαLb,air as well) at each wavelength. Emissivity for shocked and unshocked sample can thus be calculated for various thicknesses with ε = 1 − e−αL where α is the absorption coefficient. To obtain temperature, we fit Lb, at various wavelengths to equation (2). Note that this is not completely new as a gray body spectrum nor need it imply that the material is a blackbody; emissivity is separated from spectral radiance and the fitting of Lb’s to equation (2) represents the true temperature.

[17] Besides temperature and optical properties (linear absorption coefficients), the shock wave velocity Us can also be deduced from the spectral radiance history as Us = d0/Δt where Δt = t2 − t1 is shock travel time across a distance d0 (Figures 5a and 5b where the air gap is absent). On records showing a sharp from the air gap t1 is obscured and times b and d are chosen as t1 and t2, respectively (Figure 5c). The flyer plate velocity (up) is obtained from flash X-ray radiography. Without assuming an equation of state (e.g., Us − up relation) of the sample material, the pressure PH, density p and up at shock state can be obtained from the impedance match method (jump conditions)

\[ρ₀Au₀Uₚ = ρ₀B[Q₀ₐ + sₐ(uₚ − uₚ)](uₚ − uₚ) \]

\[P_H = ρ₀Au₀Uₚ \]

\[ρₐ = ρ₀Auₐ/(Uₐ − uₚ) \]

where subscript 0 refers to initial condition, A refers to the sample and B denotes the flyer (or, equivalently, the flyer as both driver and flyer are Ta plates). Parameters Cₐ₀, sₐ, and ρ₀B are known for Ta standard [Mitchell and Nellis, 1981]. Results are summarized in Table 2.

4.1. Quartz

[18] Complete spectral radiance signals were recorded at λ = 451.5, 602.7 and 748.3 nm (the other three channels were off scale) during this diagnostic shot (334). There is no air radiance peak on these records, so we fit the radiance history at each of the three recorded wavelengths to

\[L_λ = L_{b,λ} \left[1 − e^{−α_λ(Uₐ − uₚ)} \right] e^{−α_λ(uₚ − uₚ)} \]

with Lb,λ, aλ, and uλ being unknown parameters. The fitted values of aλ and uλ indicate that shock-synthesized high-pressure phase is essentially black (e.g., at d > 0.2 mm) and the unshocked pure quartz is totally transparent at these three wavelengths as expected (Figure 5a). Given Lb,λ, at different wavelengths, we obtain TH = 6680 ± 420 K from fitting to equation (2). The clear onset and exit times of shock transit through the sample on this record yield good values for Us, P_H, and up as well (Table 2). Our (Us, up) values at P_H = 106 GPa agree with R. G. McQueen's Us − up relationship [Lyzenga et al., 1983]: Us/(km/s) = 1.241(0.160) + 1.850(0.045) up.

[19] Lyzenga and Ahrens [1980] obtained ε ≈ 1 and 5820 ± 150 K at 106.5 GPa assuming gray body radiance. Their whole-spectrum fitting indicates the high-pressure phase is blackbody-like, consistent with our values of aλ from non-linear fitting to the radiation history obtained in our separate shot. If the unshocked material is totally transparent and the shock-synthesized phase black as appears to be the case for quartz, the two methods of fitting ought to yield the same result. Our current measurement of TH = 6660 ± 420 K matches a shock temperature calculation (TH = 6650 K at 106 GPa) [Luo et al., 2003b] that used an independent measurement of the high-pressure Grüneisen parameter of stishovite [Luo et al., 2002b]. The new
4.2. Olivine (Mg,Fe)\(_2\)SiO\(_4\)

[20] Shock temperature experiments on (Mg\(_{0.9}\), Fe\(_{0.1}\))\(_2\) SiO\(_4\) olivine (denoted as Fo\(_{90}\)) [Holland and Ahrens, 1997] and Mg\(_2\)SiO\(_4\) forsterite (Fo\(_{100}\)) [Lyzenga and Ahrens, 1980] were previously conducted. However, Holland and Ahrens [1997] used the conventional gray body method of determining \(\varepsilon\), which as we have emphasized is sensitive to calibration errors and can be confounded by spectral features of unshocked and shocked samples. Here we apply our calibration-independent fitting technique for \(a_s\) and \(a_u\) to reanalyze data from shot 245 on olivine (Figure 5b) [Holland, 1997]; this is the only shock-temperature recording of a Fo\(_{90}\) experiment that yielded data of sufficient quality for the present analysis technique. Time-resolved radiation signals were obtained at five wavelengths (Figure 5b). These recordings did not give flat-topped spectral radiation signals, indicating that absorption by unshocked material is significant and that an arbitrary choice of time window for gray body fitting could yield inaccurate results. Like the quartz data presented above, the initial flash from air radiation is absent. Thus we fit the observed spectral radiance to equation (8) (Figure 5b). The fitted \(a_s(\lambda)\) agrees with the measured absorption spectrum of the unshocked olivine [Holland, 1997]. We obtain \(P_f = 188\) GPa and \(U_s = 11.46\) km/s (Table 2), which agree well with the known Hugoniot EOS of olivine, \(U_s(\text{km/s}) = 6.56(0.33) + 1.01(0.08) u_p\) [Brown et al., 1987b], at the value of \(u_p = 4.89\) km/s given by the impedance match.

[21] However, for shock temperature, fitting our values of \(L(d_{au},\lambda)\) to equation (2) results in \(T_{HH} = 4810 \pm 70\) K, which is significantly lower than the previous result of 6092 \(\pm 310\) K [Holland and Ahrens, 1997], but similar to the forsterite result of Lyzenga and Ahrens [1980] at slightly lower pressures. The relationship of our result to these previous gray body fitting studies can be understood by exploring the behavior of emissivity of the shocked sample (\(\varepsilon_s\)) and the effective emissivity (\(\varepsilon_{\text{eff}}\)) observed at the free surface (Figure 6). \(\varepsilon_s\) increases with thickness: \(\varepsilon_s = 1 - e^{-a_u d_{au}}\). As shown in Figure 6a, \(\varepsilon \sim 1\) at \(d_{au} > 1\) mm (i.e., at \(\geq 150\) ns shock travel time) for these five wavelengths. This indicates that the shocked olivine is essentially blackbody at \(d_{au} > 1\) mm which is in contrast to \(\varepsilon = 0.23\) reported by Holland and Ahrens [1997]. Corrections are not made for other olivine shots due to the poor quality of recordings, but we expect that the reported values of \(T_{HH}\) should have been much lower.

[22] If the observed radiance resulting from emission in the shocked sample and absorption in the unshocked portion of the sample were to be interpreted as radiation from a single gray body, the result would be characterized by an effective emissivity \(\varepsilon_{\text{eff}} = [1 - e^{-a_u d_{au}}][1 - e^{-a_d d_{dau}}]\). For gray body fitting to the net radiation emerging from the experiment to be appropriate, it is necessary that each channel give the same value of \(\varepsilon_{\text{eff}}\) throughout the analyzed time window. As seen from Figure 6b, the effective radiance calculated with our fitted values of \(a_s\), \(a_u\) and other parameters is not gray body until the very end of the record, when the shock exits at the free surface and hence absorption by the unshocked material vanishes. Thus it is not appropriate to use the last 100-ns record for gray body fitting [Holland and Ahrens, 1997] – the observed radiance in this window is band-like due to the absorption spectrum of unshocked olivine.

[23] We expect that the \(\varepsilon \sim 1\) given by our analysis of shot 245 is in fact typical for the high-pressure assemblage of either shocked Fo\(_{90}\) or Fo\(_{100}\), despite the emissivities in the range of 0.53–0.66 obtained by Lyzenga and Ahrens [1980] using gray body fitting. The published oscilloscope traces shown by Lyzenga [1980] indicate plateau-like radiation histories in the three shots between 150–175 GPa similar to that for quartz (Figure 5a), implying that the shocked sample is blackbody like and the unshocked
4.3. MgSiO$_3$ Glass, Enstatite, and Air

[19] The spectral radiance histories for shocked MgSiO$_3$ glass (e.g., Figure 4) and crystal enstatite (e.g., Figure 5) demonstrate air-radiance peaks, due to sample preparation procedures that failed to eliminate the air-gap or produce a sufficiently opaque aluminized surface on the sample. Thus we fit the data to

\[L_\lambda = L_{\lambda,b,\text{air}} \epsilon_\text{air} e^{-a_\lambda d_s} e^{-a_\lambda d_t} + L_{\lambda,b,s}(1 - e^{-a_\lambda d_s}) e^{-a_\lambda d_t} \]

where \(d_s = (U_s - u_p) t \) and \(d_t = d_0 - U_s t \). Two extra parameters \((L_{\lambda,b,\text{air}}\) and \(\epsilon_\text{air}\) compared to the quartz and olivine cases considered above are required to describe the radiation from the air gap. Because the shock reverberates to a peak pressure within the thin air layer, \(d_{\text{air}} \) cannot be determined like \(a_s \) and \(a_t \). Instead, \(L_{\lambda,b,\text{air}}\) and \(\epsilon_\text{air}\) are coupled as a single parameter \((L_{\lambda,\text{air}})\) in the fitting. The fitted values of \(a_t \) reproduce the absorption spectra of the unshocked materials (for enstatite, compare Figure 3 and 7a). The large values of \(a_t \) indicate that, at these six wavelengths, the shock-synthesized perovskite from MgSiO$_3$ glass and enstatite may be regarded as blackbody once the thickness of shocked material exceeds \(\approx 0.1 \text{ mm} \), i.e., after \(\approx 10 \text{ ns} \) of shock transit time (Figure 7b).

[24] Figure 8 displays a representative blackbody fitting of \(L_{\lambda,b,s}\) at six wavelengths to equation (2) for shock temperature of enstatite (shot 340). For comparison we also show a conventional two-parameter gray body fit (at shock exit \(L_{\lambda,b,s} \approx L_{\lambda}\), so both fits use the same data points). It is not surprising that the two-parameter gray body fit matches the data better than the one-parameter blackbody fit, but the former yields an unphysical value of \(\epsilon = 1.57 \pm 0.44\) and a

![Figure 7. Optical linear absorption coefficients: (a) shocked \((a_s)\) and (b) unshocked \((a_t)\) enstatite (shots 340–342). Note pronounced absorption peak for \(a_s\) at 905 nm agrees with static optical spectroscopy of starting materials (Figure 3), and that shock-synthesized perovskite (once thickness exceeds \(\approx 0.1 \text{ mm}\)) behaves as a blackbody in this wavelength range.](image)

![Figure 8. Typical Planck curve fitting of \(L_{\lambda,b}\) versus \(\lambda\) to equation (2). Note that there is only one parameter \(T\) for blackbody fitting as emissivity has already been corrected in \(L_{\lambda,b}\) even if its absorption were band-like. Apparent radiance \(L_{\lambda}\) at shock exit is close to \(L_{\lambda,b}\) as shocked sample is blackbody. Gray body fitting to same data should yield results similar to those from blackbody fitting. A two-parameter gray body fitting is a better fit to the data but the former yields an unphysical value of \(\epsilon = 1.57 \pm 0.44\) and a](image)
lower temperature $T_H = 3820 \pm 190$ K (compared to $T_H = 4130 \pm 50$ K for the blackbody fit). This exercise demonstrates that whole-spectrum gray body fitting to data of the spectral resolution and precision available in this kind of experiment can easily yield unphysical or inaccurate results. We are concerned that this kind of trade-off may have affected reported temperature values in previous shock temperature studies (e.g., the forsterite experiments of Lyzenga and Ahrens [1980] discussed above) and we recommend the current time-resolved absorption analysis as an alternative.

[26] All three enstatite crystal experiments (340–342) yield fits with estimated uncertainties in T_H that are less than 3%. The values of T_H increase monotonically with shock pressure in the range 142 to 183 GPa (Figure 9). Of the two experiments on enstatite glass, shot 335 yields a result with an uncertainty of $\sim 2\%$, but the fit for glass shot 336 is based on only two channel recordings and so yields an uncertainty of $\sim 10\%$. Most likely, T_H increase with P_H in this case, but the difference is not significant. Note that all the uncertainties in T_H reported here are only from the blackbody fitting itself – certainly other possible random or systematic error sources could be contributing as well.

[27] We also deduce values for P_H, U_s, and u_p from the radience histories (Table 2). $U_s - u_p$ pairs for MgSiO$_3$ glass and enstatite were measured from independent shock wave experiments with streak-camera diagnostics [Akins, 2003] which are shown as circles in Figure 9 along with our new results (squares). Note that there are apparent slope changes (indicated by arrows) on both glass and enstatite Hugoniot near $u_p = 4.23$ and 4.72 km/s, respectively. As the density on Hugoniot $\rho_H = \rho_H(1 - u_p/U_s)$, such slope changes in $U_s - u_p$ indicate phase changes with density increase on glass Hugoniot and decrease on enstatite Hugoniot [McQueen et al., 1970]. In Pv regime, $U_s(km/s) = 4.29(0.27) + 1.22(0.08) u_p$ (glass, $\rho_0 = 2.73$ g/cm3; $u_p < 4.23$ km/s) and $U_s(km/s) = 4.63(0.12) + 1.43(0.04)u_p$ (enstatite, $\rho_0 = 3.23$ g/cm3; $u_p < 4.72$ km/s). Beyond Pv regime, we interpret the phase changes as melting with positive Clausius-Clapeyron slope on MgSiO$_3$ glass Hugoniot and with negative slope on enstatite Hugoniot (also see next section and J. A. Akins et al., Shock induced melting of MgSiO$_3$ perovskite and implications for melts in Earth’s lowermost mantle, submitted to Science, 2003, hereinafter referred to as Akins et al., submitted manuscript, 2003). Recent studies (M. Murakami et al., Post-perovskite phase transition in MgSiO$_3$, manuscript submitted to Science, 2004, and T. Tsuchiya et al., Phase transition in MgSiO$_3$ perovskite in the Earth’s lower mantle, manuscript submitted to Science, 2004) have documented a solid-solid phase transition in this system, but this does not explain the density decrease on the glass Hugoniot, and the density increase based on the reported equation of state of the post-perovskite phase is inadequate to explain the density increase seen on the enstatite Hugoniot as well.

[28] Our analysis allows the effect of the air gap to be decoupled from the observed spectral radiance. The shock behavior of air is interesting by itself [Zel’dovich and Raizer, 2002], with possible ionization, plasma, and chemical reaction effects, but this technique is unlikely to yield useful by-product information on air properties. First, the air radiance depends on driver-sample interface properties (e.g., thickness and coating) that are not necessarily reproducible. Second, the initial pressure in the air gap is unknown, since the sample chamber is pumped to vacuum but the glue holding the sample to the driver may form a partial seal. Third, the shocked thin Al coating could also contribute to the air-radiance. The spectra in the range of 450–900 nm appear band-like rather than gray, yet in the analysis the values of $L_{\lambda,air}$ and e_{air} are coupled as $L_{\lambda, air}$. Nevertheless, as an example, a simple blackbody fitting for shot 340 yields air temperature $T \sim 6270$ K (peak pressure ~ 142 GPa).

[29] Note that the emissivities of the shocked silicates are all close to 1 for the wavelengths adopted. This could be due to the combined effects of both temperature and optical roughness (grain size) of the shocked samples [Siegel and Howell, 2002]. Possibly, the latter effect is dominant.

5. Geophysical Implications

[30] Our method of obtaining linear absorption coefficients, Hugoniot temperatures, and Hugoniot equation of state data from optical radiance data provides substantial improvement in the precision and accuracy of information on the shock properties of quartz, olivine and forsterite, and its application to the MgSiO$_3$ glass and enstatite study yields new results of geophysical significance. One of the major applications of shock temperature data is the determination of melting behavior at lower-mantle conditions ($25 < P < 136$ GPa), where static high pressure data on melting are often absent or inconsistent. Here we discuss the implications of our new data and reanalysis of existing data

Figure 9. $U_s - u_p$ relations for shocked MgSiO$_3$ glass and enstatite from this work (squares) and Akins [2003] (circles). Solid lines are linear fits in Pv regime beyond which Pv melts with positive (on glass Hugoniot) and negative (on enstatite Hugoniot) Clausius-Clapeyron slopes. Note that enstatite data from radiation history (open squares) agree with Akins [2003] within experimental uncertainties. In general, the uncertainties in U_s and u_p from radiation history are larger than those from streak-camera diagnostics as employed in Akins [2003]. (Some error bars are smaller than the symbol size.)
for possible melting scenarios of Mg-perovskite and its assemblage with MgO at lower mantle conditions based on shock wave and DAC measurements.

5.1. Underlying Logic

[31] The inference of melting curves from Hugoniot temperature information is challenging. It is best to study materials (such as MgSiO$_3$) that melt congruently along a single curve. We do not take into account possible variations in pressure and temperature at melting due to differences between olivine composition and the eutectic point in the high-pressure MgO-MgSiO$_3$ binary. We also neglect the effect of solid solution in the melting Fo$_{90}$. In the ideal case, equilibrium melting would occur and a sequence of Hugoniot temperature data would be available that capture three regimes: (1) the lower-pressure experiments should be consistent with a calculated Hugoniot for the expected solid assemblage; (2) the intermediate pressure data would achieve equilibrium partial melting states and should follow a plausible equilibrium melting curve with a lower slope assemblage; (2) the intermediate pressure data would be consistent with a calculated Hugoniot for the expected solid regimes: (1) the lower-pressure experiments should capture three Hugoniots where solid-solid phase change occurs at high pressures, as is the case here for shock loading low-pressure phases (LPP) such as MgSiO$_3$ glass, enstatite, forsterite and olivine. Suppose that the $U_s - u_p$ relation is

$$
\Delta E_H = \Delta E_s + E_u + \int_{T_1}^{T_3} C_v dT
$$

known in the high-pressure phase (HPP) regime. An isentrope of HPP centered at standard temperature T_0 and pressure P_0 (STP, denoted as subscript 0) can be constructed (e.g., with third order Birch-Murnaghan EOS given ambient bulk modulus K_0 and its pressure derivative K_0'. Temperature along the isentrope is $T_s = T_0 \exp(-\gamma q V / dV V)$ where V is volume and γ Grüneisen parameter. The internal energy increase along an isentrope ΔE_s can be calculated by integrating $P(V)$. At the same volume, the internal energy increase on Hugoniot is $\Delta E_H = 1/2(P_H + P_0)(V_0 - V)$. The pressure difference between the isentrope and Hugoniot at the same volume is due to thermal pressure, assuming a Mie-Grüneisen-type equation of state. Thus T_H can be obtained by solving

$$
\Delta E_H = \Delta E_s + E_u + \int_{T_1}^{T_3} C_v dT
$$

where E_u is the transformation energy from LPP to HPP at STP and can be estimated from enthalpy of formation. The constant volume heat capacity C_v can be obtained from Debye’s model. For simplicity, the Dulong-Petit limit for C_v is adopted. We assume $\gamma = \gamma_0 (V/V_0)^\gamma$ For the case Mg$_2$SiO$_4$ → MgO + MgSiO$_3$, either an isentrope for the mixture is constructed $[\text{Brown et al., 1987a}]$ or two separate isentropes are constructed with the assemblage temperature being the sum of T_s weighted by the mass

Table 3. Parameters for Shock Temperature Calculation

<table>
<thead>
<tr>
<th>K_{gs}, GPa</th>
<th>K_{gs}'</th>
<th>γ_0</th>
<th>q</th>
<th>H_0, V_0</th>
<th>$U_s - u_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO (Pe)$_f$</td>
<td>160.3</td>
<td>4.13</td>
<td>1.52</td>
<td>1.0</td>
<td>-14924</td>
</tr>
<tr>
<td>MgSiO$_3$ (Pe)$_f$</td>
<td>260.0</td>
<td>3.7</td>
<td>1.5</td>
<td>1.0</td>
<td>-14439</td>
</tr>
<tr>
<td>Pe + Pv</td>
<td>200.0</td>
<td>4</td>
<td>1.5</td>
<td>1.0</td>
<td>-14578</td>
</tr>
<tr>
<td>MgSiO$_3$ (Gib)$_f$</td>
<td>-14972</td>
<td>$U_s = 4.29 + 1.22 u_p$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgSiO$_3$ (En)$_f$</td>
<td>-15395</td>
<td>$U_s = 4.63 + 1.43 u_p$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgSiO$_3$ (Fo)$_f$</td>
<td>-15426</td>
<td>$U_s = 3.80 + 1.69 u_p$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K_0 and K_0' $[\text{Fei et al., 1990}]$; γ_0 and q $[\text{Akins, 2003}]$; H_0 $[\text{Robie et al., 1979}]$.

K_0 and K_0' $[\text{Fiquet et al., 2000}]$; γ_0 and q $[\text{Akins, 2003}]$; H_0 $[\text{Saxena et al., 1993}]$.

K_0 and K_0' $[\text{Brown et al., 1987b}]$; γ_0 and q (assumed); H_0 weighted by $n_0 = 4.10$ g cm$^{-3}$.

$U_s - u_p$ $[\text{Akins, 2003}]$; H_0 calculated after $\text{Richert and Bottlinger, 1986}$ and Richert, 1987.

$U_s - u_p$ $[\text{Richert, 1987}]$; H_0 $[\text{Berman, 1988}]$.

$U_s - u_p$ $[\text{Brown et al., 1987a}]$; H_0 $[\text{Robie et al., 1979}]$.

Figure 10. Melting of Mg-perovskite at high pressures: shock wave loading of MgSiO$_3$ glass and enstatite. Dashed curves denote multianvil melting curve by $\text{Kato and Kumazawa, 1985}$ (KK) and DAC melting curves by $\text{Zerr and Boehler, 1993}$ (ZB), $\text{Heinz and Jeanloz, 1987}$ (HJ), $\text{Knittle and Jeanloz, 1989}$ (KJ) and $\text{Sweeney and Heinz, 1998}$ (SH). Point t is the invariant point where the liquidus intersects the majorite-perovskite reaction and is considered well-known at about 2600 K and 22.5 GPa. Solid curves represent calculated MgSiO$_3$ glass and enstatite Hugoniots assuming the phase in the Hugoniot state is solid perovskite. Two calculated enstatite Hugoniots are shown for $C_s = 3R$ and 3.3R (lower solid curve), respectively. Filled diamond (c) denotes the melting point calculated if b is above melting curve. Dotted curves (Pv-1, 2 and 3) are deduced melting curves (schematic) of perovskite, and Pv-3 is preferred (see text).
fractions of the components [Tan and Ahrens, 1990]. The parameters used in the solid Hugoniot calculations are listed in Table 3 and calculated shock temperatures are shown in Figures 10–11. Note that all the parameters for calculation are from the literature and may or may not represent the true physical properties.

If a Hugoniot temperature datum is found to be substantially lower than a calculated solid-state Hugoniot, a plausible interpretation is that the Hugoniot state is molten or partially molten and the temperature difference is due to the latent heat of melting. In this case, in order to obtain a constraint on the location of the melting curve \(T_m(P) \) it is necessary to distinguish partially molten states (for which \(T_H = T_m \)) from completely molten states (for which \(T_H > T_m \)). One way to make this distinction is to compare the temperature drop \(\Delta T \) (relative to extrapolation from the measured or calculated solid-state Hugoniot) to the expected magnitude of cooling required by complete melting at constant pressure and internal energy. The critical temperature drop required for complete melting \(\Delta T' \sim T_m \Delta S_m / C_p \), where \(\Delta S_m \) and \(C_p \) are entropy of melting and heat capacity per mole of atoms, respectively. As a reasonable approximation, \(C_p \sim 3R \) and \(\Delta S_m \sim \text{Rln}2 \) or \(\text{Rln}2 R \) where \(R \) is the gas constant [Luo and Ahrens, 2004]. In principle, \(\Delta T < \Delta T' \) indicates partial melting, while for \(\Delta T > \Delta T' \), it is difficult to distinguish with confidence fully equilibrium melting from a fully molten

state already well above the melting curve if a densely sampled data set is not available.

5.2. MgSiO\(_3\) Perovskite System

Existing estimates of the high-pressure melting of Mg-perovskite from DAC studies differ. Zerr and Boehler [1993] presented a fairly steep melting curve leading to an estimated \(T_m \) near the CMB of \(~7000\) K. On the other hand, the results by Heinz and Jeanloz (1993), Knittle and Jeanloz [1989] and Sweeney and Heinz [1993] yield lower values of \(T_m \), perhaps \(2000–3500\) K (Figure 10). Revised data by Sweeney and Heinz [1998] agree with Zerr and Boehler [1993] at the lower pressures. Below we attempt to place additional constraints on melting of P\(v\) using shock data.

As discussed above, in both the pair of MgSiO\(_3\) glass experiments and the set of three enstatite crystal experiments, we see monotonically increasing \(T_H \) with \(P_H \) in each set, and no break in slope among the three crystal experiments. Hence we do not directly observe melting on either \(P \leftarrow T \) Hugoniot of MgSiO\(_3\). Instead, we proceed to gain some inferences from comparison of the measured \(T_H \) values to calculated solid perovskite phase Hugoniots (Figure 10). The results are that, if the Hugoniot pressures of the experiments are all correct, then the MgSiO\(_3\) glass points (including the well-constrained experiment at point \(b \)) are \(\Delta T \sim 1000 \) K below the perovskite Hugoniot centered on glass, whereas the enstatite crystal data are at \(\Delta T \sim 500–1000 \) K relative to the perovskite Hugoniot centered on enstatite (the upper one in Figure 10, which assumes \(C_v = 3R \)). The magnitude of temperature drop that we expect for complete melting of shocked enstatite is \(\Delta T' \geq 1000 \) K.

The first interpretation we consider is that all the data are in the solid regime. This would provide no upper bound on the melting curve, and only a very weak lower bound from the maximum plausible amount of superheating [Luo and Ahrens, 2003, 2004; Luo et al., 2003a]. The Zerr and Boehler [1993] curve is consistent with this, but extrapolations of melting curves (e.g., HV in Figure 10) indicate melting temperatures below 3000 K at 120 GPa are difficult to satisfy as these require \(>80\% \) superheating. On the other hand, this interpretation would require either systematic overestimation of our experimental pressures or significant revisions in the parameters used to predict the solid-state HPP Hugoniots, so as to bring the data and the calculation into agreement if the data do indeed represent solid perovskite Hugoniots. It is also inconsistent with the existence of phase transition (melting) at pressures near \(b \) and \(f \) (Figure 10) as indicated by \(U_x - n_p \) relations (Figure 9).

The second interpretation is that the well-constrained point \(b \) on the glass Hugoniot is partially molten and sits on the melting curve, in which case a simple extrapolation of \(\text{lb} \) would yield melting curve \(\text{Pv-l} \) which indicates that states \(d - f \) are solid. The interpretation that state \(b \) is partially molten (melt fraction \(\sim 0.5 - 0.8 \)) is consistent with \(\Delta T \sim 1000 \) K for point \(b \), since a melting point of 5580 K at this pressure would imply \(\Delta T' \sim 1300–1800 \) K. This interpretation is consistent with the HPP solid perovskite Hugoniot calculated for glass, but as above would require a revision in the parameters to obtain agreement between the inferred solid states \(d - f \) and the HPP Hugoniot centered on enstatite. Improved consistency would result if both solid
Hugoniots were revised downwards by \(\sim 500 \) K. Since the same parameters go into these two calculations (except for \(H_0 \) for glass and enstatite, which are well-constrained), both curves would need to be revisited. Among all the possibilities of varying the parameters for calculating Hugoniot, the calculated \(T_H \) with a revised \(C_v \) of \(\sim 3.3 \) \(R \) [Lyzenga et al., 1983] would agree with the measurements at \(d - f \) and thus support this interpretation. Again, such an interpretation is not consistent with \(U_e - u_p \) observations as argued above.

[36] The third interpretation is that \(b \) is a fully liquid state above the melting curve. In this case a plausible melting curve \(\text{Pv-2} \) could be constructed by assuming \(\Delta T = \Delta T' \) for experiment \(b \), in which case \(T_m = \Delta T C_p / \Delta S_m \) and \(C_p / \Delta S_m \sim 3/\ln2 \) imply \(T_m \sim 4300 \) K (state \(c \)). The resulting melting curve through \(t - c \) passes close to the enstatite crystal Hugoniot point \(f \), which could then plausibly be either superheated or partially melted. In this case \(d \) is most likely in solid state and \(e \) is close to the melting curve, i.e., partially molten or solid. The disagreement between solid Hugoniot data and the calculated solid HPP Hugoniot in this case would also be \(\sim 500 \) K. \(\text{Pv-2} \) seems plausible as the interpretation of shock temperature is consistent with melting near \(b \) and \(f \) as suggested by \(U_e - u_p \), but its Clausius-Clapeyron slope near \(f \) is positive instead of negative as suggested by \(U_e - u_p \) relation.

[39] The \(U_e - u_p \) relations (Figure 9) suggest that melting with density decrease and increase occurs at pressures near \(b \) and \(f \), respectively. Thus a consistent interpretation of shock temperatures and \(U_e - u_p \) relations is that the melting curve passes near \(b \) with positive Clausius-Clapeyron slope and \(f \) with negative slope (Pv-3). Among these three candidate high-pressure melting curves of \(\text{Pv} \), \(\text{Pe} \), and \(\text{Pv} \), \(\text{Pv-3} \) is constrained by both \(U_e - u_p \) and temperature data, thus the most plausible; we propose that perovskite melts along \(\text{Pv-3} \) with \(T_m \sim 6000 \) K and slight density increase [Akins, 2003] at the CMB.

5.3. Olivine and Forsterite Systems

[40] \(\text{Mg}_2\text{SiO}_4 \) is expected to disproportionate into \(\text{MgO} \) (Pe) and \(\text{MgSiO}_3 \) (Pv) at lower mantle conditions [Pressnall, 1995]. The melting of the Pe-Pv assemblage may be directly relevant, for example to the interpretation of seismic ultralow velocity zones above the core-mantle boundary resolved from travel time and waveform observations [Garnero and Helmberger, 1995; Luo et al., 2001, 2002a]. Hugoniot state (\(U_e - u_p \)) and sound speed measurements on \(\text{Fo}_{100} \) and \(\text{Fo}_{90} \) suggest that shock-induced melting occurs at about 145–150 GPa [Brown et al., 1987a, 1987b], which indicates that shock temperature measurements in a pressure range readily achievable with a two-stage light gas gun can be used to explore melting of this assemblage. Eutectic melting of the Pe-Pv assemblage [Zerr et al., 1997] and the solidus of pyrolite [Zerr et al., 1998] have been investigated up to 60 GPa. Shock wave pyrometry has been applied to probe the melting of forsterite [Lyzenga and Ahrens, 1980] and of olivine (\(\text{Fo}_{90} \); [Holland and Ahrens, 1997]) at higher pressures, but our study of emissivity and absorption suggests a need to revise the results of these studies. The voltage recordings from the latter study allow us to better define one Hugoniot temperature at \(\sim 188 \) GPa (Figure 11).

[41] Our data analysis has shown that the high-pressure assemblage Pe-Pv of shocked \(\text{Fo}_{100} \) is essentially black-body like, whereas Lyzenga and Ahrens [1980] obtained gray body fits for \(\text{Fo}_{100} \) with emissivity in the range of 0.53–0.66. In the following discussion, we still consider the original temperatures of Lyzenga and Ahrens [1980] for \(\text{Fo}_{100} \) as well as corrected values based on \(e = 1 \) (Figure 11).

[42] Compared to both methods of calculating the HPP solid Hugoniot, all the revised \(T_H \) measurements are appreciably lower than reported earlier, which is consistent with the interpretation of sound speed results (as well as \(U_e - u_p \) showing that all these points should be molten (Figure 11)). We consider two scenarios of melting: equilibrium and non-equilibrium (with superheating). If we adopt the original temperatures of Lyzenga and Ahrens [1980], points \(c - e \), then melting curve PP-1 is consistent with states \(c \) and \(d \) representing partial melting and \(e \) indicating complete melting. Thus \(acd \) is the segment of the Hugoniot representing equilibrium melting of the Pe-Pv assemblage. But if the solidus depression due to fayalite component is small, then state \(f \) for \(\text{Fo}_{90} \) seems inconsistent with such an interpretation. States \(e \) and \(f \) cannot both represent fully molten states (even if the melting curve has a negative slope in this region like \(\text{Pv} \)) as in this case the temperature drop from \(e \) to \(f \) cannot represent consumption of latent heat. On the other hand, if the corrected temperatures for \(\text{Fo}_{100} \) (diamonds) are adopted, we can construct a superheating-melting curve \(abc'f' \), i.e., with increasing Hugoniot pressure, the Pe-Pv assemblage is superheated to \(\sim 150 \) GPa, then melts and achieves temperature close to the melting curve \(c'f' \), followed by liquid Hugoniot \(cf' \). We thus approximate the melting curve as PP-2. The melting temperature of the Pe-Pv assemblage at olivine bulk composition at the pressure of the CMB in these two scenarios is estimated as \(\sim 4000 \) K and \(4400 \) K, respectively. PP-2 is favored because it applies a consistent methodology to emissivity determination in all the data and better explains the radiation history of the Lyzenga and Ahrens [1980] experiments.

[43] More shock wave data would help with resolving the ambiguities in these interpretations, which remain to be investigated in the future. On the basis of the arguments above, we propose that the melting temperatures at the CMB are about 6000 ± 500 K for Mg-perovskite, and 4000 ± 300 K for olivine composition undergoing eutectic melting as a Pe-Pv assemblage (Uncertainties are estimated). These values are consistent with the prediction by Boehler [2000] that liquids in equilibrium with lower mantle minerals are very rich in MgO at CMB pressures. Once experiments firmly establish these melting points, interpretation of possible partial melting zones in ULVZs at the base of the mantle will depend on constraining the lower mantle adiabat, the temperature contrast across the core-mantle thermal boundary layer, the melting temperature of core alloys, and the role of chemical heterogeneities and minor components in the Dm layer. Of particular interest is that if the lower mantle adiabat allows melting, Pm melt may be denser than its solid counterpart. This suggests that locally formed dense Pm melt (e.g., at ULVZ’s) is more resistant to upwelling
driving force and thus more stable (Akins et al., submitted manuscript, 2003).

6. Conclusion

[45] Shock wave optical pyrometry experiments on MgSiO₃ glass, enstatite, olivine and quartz yield time- and wavelength-resolved spectral radiances. The shock travel time inferred from digital oscilloscope recordings of optical radiation is consistent with previous Hugoniot equations of state measured with streak camera or other diagnostics. At each wavelength, the optical absorption coefficients and blackbody spectral radiances of the shocked and unshocked samples were obtained by fitting to the radiation history. The linear absorption coefficients indicate blackbody radiation of shock-synthesized high-pressure phases (once thickness of the shocked layer exceeds 1 mm) in the wavelength range investigated. However, unshocked crystalline enstatite and Fe-bearing olivine are shown to have absorption bands in their spectra that complicate effective gray body fitting of radiation emerging from partly shielded shock fronts. We suggest downwards revisions in the shock temperatures for olivine previously published by Lyzenga and Ahrens [1980] and Holland and Ahrens [1997]. Temperatures of shock-synthesized Mg-perovskite and its assemblage with periclase provide constraints on their high-pressure melting curves. It is suggested that Mg-perovskite melts with density increase at the CMB pressure, and that the melting temperatures at the CMB are about 6000 ± 500 K for Mg-perovskite, and 4000 ± 300 K for the Mg-perovskite-periclase assemblage.

Acknowledgments. This work was supported by U.S. National Science Foundation Grant No. EAR-0207934 (TJA and PDA). SLN is sponsored by a Director's Post-doctoral Fellowship at Los Alamos National Laboratory. SNL is supported by a Director's Post-doctoral Fellowship at Los Alamos National Laboratory. Temperatures of shock-synthesized Mg-perovskite in its assemblage with periclase exceed 1 mm) in the wavelength range investigated. However, unshocked crystalline enstatite and Fe-bearing olivine are shown to have absorption bands in their spectra that complicate effective gray body fitting of radiation emerging from partly shielded shock fronts. We suggest downwards revisions in the shock temperatures for olivine previously published by Lyzenga and Ahrens [1980] and Holland and Ahrens [1997].

References

Fei, Y., S. K. Saxena, and A. Navrotsky (1996), Internally consistent thermodynamic data and equilibrium phase relations for compounds in the system MgO-SiO₂ at high pressure and high temperature, J. Geophys. Res., 95, 6915–6928.
Jackson, J. D. (1975), Classical Electrodynamics, John Wiley, Hoboken, N. J.

T. J. Ahrens, J. A. Akins, and P. D. Asimow, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.

S.-N. Luo, Plasma Physics (P-24), MS E526, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. (shuo@lanl.gov)